본문 바로가기
반응형

ML22

[ML][Ensemble] Ensemble Learning(앙상블 학습), Bagging(배깅),Boosting(부스팅) Ensemble Learning(앙상블 학습)Ensemble Learning이란 여러 개의 모델을 학습시켜, 다양한 예측 결과를 이용하는 방법론입니다보통 Decision Tree에서 자주 사용되며, 크게 Bagging, Boosting이 있습니다Bagging(배깅, Bootstrap Aggregation)먼저 Bagging에 대해 알아보도록 하겠습니다Bagging은 분산이 $\sigma^2$인 독립적인 Observation($Z_1, Z_2, \cdots, Z_n$)이 있을 때, Observation의 평균 $\bar{Z}$의 분산은 $\frac{\sigma^2}{n}$이 되는 것을 이용하여, 여러 Observation을 평균을 내면 분산이 줄어드는 점을 이용한 방법입니다 즉, Bootstrap을 이용해.. 2024. 6. 25.
[ML][Ensemble]Decision Tree(결정트리) Machine Learning 주제에서 Ensemble 학습에 들어가기 전에 Ensemble 학습의 대표적인 모델인 Random Forest가 Decision Tree 기반으로 되어있기 때문에 Decision Tree에 대해 공부하고 Ensemble 학습에 대해서 공부해보도록 하겠습니다 Decision Tree(결정트리)Decision Tree란 의사 결정 규칙과 그에 따른 결과들을 Tree 구조로 나타낸 모델입니다예측을 위해 여러 Region으로 Segmenting 하는 과정을 거치게 되고 분류 및 회귀에서 모두 사용 가능합니다 아래의 그림에서 "Years  Root Node : Tree 최상단에 위치하며, 데이터 분류의 시작점Internal Node : 하나의 Feature에 대한 조건으로 분할되는 .. 2024. 6. 24.
[ML][Classification]Linear Discriminant Analysis(LDA, 선형판별분석), Quadratic Discriminant Analysis(QDA) Linear Discriminant Analaysis(LDA, 선형판별분석)LDA는 주로 데이터 분포를 학습하여 새로운 데이터의 클래스를 예측하는 것과 데이터의 차원을 축소하는 두 가지 목적을 위해 사용됩니다핵심 아이디어는 각 클래스 간의 분산을 최대화하면서, 클래스 내의 분산을 최소화하는 방향으로 데이터를 변환하는 것입니다 LDA의 기본가정1. Density Function이 Gaussian Distribution을 따른다$${\large f_k(x) = \frac{1}{\sqrt{2\pi} \sigma_k} e^{-\frac{1}{2} (\frac{x - \mu_k}{\sigma_k})^2}}$$2. 각 클래스의 분산은 동일하다$${\large \sigma_k = \sigma} \; for\;all\.. 2024. 6. 19.
[ML][Classification] Soft Margin SVM, Nonlinear SVM(비선형 서포트 벡터 머신), Kernel Trick, Multiclass SVM [ML][Classification] Support Vector Machine(SVM, SVD)이번 글에서는Binary Classification에서 주로 활용되는 Support Vector Machine에 대해 공부해보고자합니다 SVM에 들어가기에 앞서 먼저 알아두고 가야할 것들에 대해 설명하고 시작하도록 하겠습니다 ! self-objectification.tistory.com 앞선 글에서 Support Vector Machine에 대해서 공부해보았습니다이번 글에서는 SVM의 심화주제인 Soft Margin SVM, Nonlinear SVM에 대해 공부해보도록 하겠습니다Soft Margin SVM앞선 글에서 SVM은 이상치에 민감하게 반응하기 때문에 이상치 처리가 중요하다고 언급하였습니다.Outlier.. 2024. 6. 18.
[ML][Classification] Support Vector Machine(SVM, SVD) 이번 글에서는Binary Classification에서 주로 활용되는 Support Vector Machine에 대해 공부해보고자합니다 SVM에 들어가기에 앞서 먼저 알아두고 가야할 것들에 대해 설명하고 시작하도록 하겠습니다 ! ※ Hyperplane(초평면)Affine Space(어핀 공간) : 벡터 공간에서의 원점이 없는 공Vector Space(벡터 공간) : 임의의 점을 잡아도 원점에서 해당 점을 잇는 벡터로 바라보고 있는 벡터를 정의할 수 있는 공간 즉, 벡터공간에서는 벡터가 어디에 위치해 있든 크기와 방향만 같다면 모두 같은 벡터로 취급하지만 어핀 공간에서는 벡터에 위치표현을 추가하여 해단 벡터의 크기, 방향 뿐만 아니라 위치까지도 표현할 수 있는 공간이 된다 그렇다면 Hyperplane이란?.. 2024. 6. 18.
[ML]라그랑주 승수법(Lagrange Multiplier Method) 라그랑주 승수법(Lagrange Multiplier Method)라그랑즈 승수법이란 제약식(Constraint)이 있는 Optimization 문제를 라그랑주 승수 항을 추가해, 제약이 없는 문제로 바꾸는 방법입니다제약식, 라그랑주 승수에 대해서 생소하실텐데, 수식을 통해 라그랑주 승수법에 대한 설명을 시작하도록 하겠습니다Primal Problem(원초문제)우리가 해결해야할 문제입니다\begin{aligned} &\underset{x}{\min} \, c^T x\\ &subject\;to\; Ax = b\; , Gx \le h \end{aligned}원초 문제 $f = c^T x$를 최소화하는 과정에서 $Ax = b$, $Gx \le h$라는 제약식(Constraint)을 가지는 상황입니다.라그랑주 승수.. 2024. 6. 17.
[ML] 이동평균(Moving Average, SMA, CMA, WMA, EMA) Moving Average(이동평균)이란?전체 데이터 셋의 여러 하위 집합에 대한 일련의 평균을 만드는 것을 의미한다 보통 시계열 데이터에서 일정 기간동안 평균값을 계산하여 데이터의 추세를 분석하는데 사용된다(데이터의 변동성을 줄이고 장기적인 추세를 파악하기 위해서) Moving Average에는 여러 종류가 있는데 이를 살펴보겠습니다 Simple Moving Average(단순 이동 평균, SMA)정해진 폭(기간, Window)의 데이터들의 평균을 계산 $$SMA = \frac{x_M + x_{M-1} \, +\cdots \, + x_{M-(n-1)}}{n} =\frac{1}{n} \sum \limits_{i=1}^{n-1} x_{M-i}$$Cumulative Moving Average(누적 이동 평균.. 2024. 6. 10.
[ML] 최대 사후 확률(Maximum A Posterior, MAP) 최대 사후 확률(Maximum A Posterior, MAP) [ML] 최대 우도 추정법(Maximum Likelihood Estimation, MLE)최대 우도 추정법(Maximum Likelihood Estimation, MLE)최대 우도 추정법(Maximum Likelihood Estimation,  MLE)는 확률변수에서 추출한 표본 값(관측 데이터)들을 토대로 우도(Likelihood)를 최대화하는 방향으로self-objectification.tistory.com MLE는 데이터의 사전 지식 정보를 반영하지 못하고 데이터의 의존적이라는 한계를 가진다.따라서 이러한 단점을 해결하기 위해 MAP는 데이터에 대한 사전확률 정보를 가진 상황에서 사후확률을 최대화 하는 Parameter를 추정한다. $\.. 2024. 6. 7.
[ML] 최대 우도 추정법(Maximum Likelihood Estimation, MLE) 최대 우도 추정법(Maximum Likelihood Estimation, MLE)최대 우도 추정법(Maximum Likelihood Estimation,  MLE)는 확률변수에서 추출한 표본 값(관측 데이터)들을 토대로 우도(Likelihood)를 최대화하는 방향으로 확률변수의 모수(파라미터)를 추정한다이 때 Likelihood를 최대화하는 parameter는 얻은 샘플로부터 모집단의 분포를 추정하였을 때 가장 적합한 parameter이다 그럼 여기서 우도(Likelihood)란 무엇인가? 우도 확률(Likelihood Probability, $P(X | w)$)모델 파라미터(모수) 값을 잘 모르지만 안다고 가정했을 때, 주어진 데이터의 분포따라서, 모델 파라미터(w)에 대한 함수로 데이터의 분포를 표현.. 2024. 6. 7.
반응형