본문 바로가기
반응형

deep learning7

[DL][CNN] LeNet-5 1. LeNet-5 란?LeNet-5는 합성곱 신경망이라는 개념을 최초로 Yann LeCun이 개발한 구조이다. 수표에 쓴 손글씨 숫자를 인식하는 Deep Learning 구조 LeNet-5fmf 1955년 발표하였는데, 이것이 현재 CNN의 초석이 되었다. LeNet-5는 합성곱(Convolutional)과 다운 샘플링(Down - Sampling 혹은 Pooling)을 반복적으로 거치면서 마지막에 완전 연결층에서 분류를 수행한다.  Input : 32 x 32 x 1Convolution Layer 1(C1) : 5x5 합성곱 => 28 x 28의 Feature Map 6개 생성in_channels=1, out_channels=6, kernel_size=5, stride=1$W = H = \frac{3.. 2025. 1. 15.
[DL][CNN] 설명 가능한 AI (Explainable Artificial Intelligence, XAI)와 Feature Map 시각화, PyTorch 예제 1. Explainable Artificial Intelligence(XAI) 란?Explainable AI란 Deep Learning 처리 결과를 사람이 이해할 수 있는 방식으로 제시하는 기술이다. Deep Learning에서 Model 내부는 Black Box 같아 내부에서 어떻게 동작하는지 설명하기 어렵다.따라서 Deep Learning을 통해 얻은 결과는 신뢰하기 어려운데 처리 과정을 시각화해야 할 필요성이 있다. Model을 구성하는 각 중간 게층부터 최종 분류기까지 입력된 이미지에 대해 Feature map이 어떻게 추출되고 학습하는지를 시각적으로 설명할 수 있어야만 결과에 대한 신뢰성을 얻을 수 있다. 이제부터 CNN 내부 과정에 대한 시각화를 진행하는데 시각화 방법에는 Filter에 대한 .. 2025. 1. 15.
[DL][RNN] LSTM(Long Short - Term Memory) 구조 및 PyTorch 구현 LSTM(Long Short - Term Memory) 이란LSTM은 RNN 기법 중 하나로 Cell, Input Gate, Output Gate, Forget Gate를 이용해 기존 RNN의 문제인 기울기 소멸 문제(Vanishing Gradient)를 방지하도록 개발된 모델이다 RNN은 이전 단계의 출력을 다음 단계의 입력으로 사용하는 순환 구조로, Sequence 데이터에서 패턴을 학습하는 데 적합하다      하지만, RNN은 긴 시퀀스에서 초기 정보가 뒤로 갈수록 희미해지는 '장기 의존성 문제(Long-term dependency problem)'가 발생할 수 있다. 이는 RNN의 Gradient가 시간 경과에 따라 급격히 커지거나 작아지는 '기울기 소멸(vanishing gradient)'이나.. 2024. 8. 27.
[DL][RNN] RNN(Recurrent Neural Network, 순환 신경망) 구조 앞선 글에서 RNN에 대해 간략하게 알아보았습니다  [DL][RNN] RNN(Recurrent Neural Network, 순환 신경망) IntroduceRNN(Recurrent Neural Network, 순환 신경망) 이란?RNN이란 시간적으로 연속성이 있는 데이터를 처리하기 위해 고안된 인공신경망이다'Recurrent'는 이전 은닉층이 현재 은닉층의 입력이 되면서 '반복되는self-objectification.tistory.com 이번 글에서는 RNN Cell과 RNN Layer의 구조 및 수식에 대해 깊게 공부해보고 PyTorch를 통해 구현해보도록 하겠습니다RNN(Recurrent Neural Network, 순환 신경망) 구조RNN은 은닉층 노드들이 연결되어 이전 단계 정보를 은닉층 노드에 저.. 2024. 8. 26.
[DL][RNN] RNN(Recurrent Neural Network, 순환 신경망) Introduce RNN(Recurrent Neural Network, 순환 신경망) 이란?RNN이란 시간적으로 연속성이 있는 데이터를 처리하기 위해 고안된 인공신경망이다'Recurrent'는 이전 은닉층이 현재 은닉층의 입력이 되면서 '반복되는 순환 구로'를 갖는다는 의미이다RNN이 기존 네트워크와 다른 점은 기억(Memory)를 갖는다는 점이다여기서 기억이란 현재까지의 Input Data를 요약한 정보라고 생각하면 된다. 즉, 최종적으로 남겨진 기억은 모든 입력 전체를 요약한 정보라고 할 수 있다. 첫 번째 입력($x_1$)이 들어오면 첫 번째 기억($h_1$)이 만들어지고, 두 번째 입력($x_2$)이 들어오면 기존 기억($h_1$)과 새로운 입력을 참고하여 새 기억($h_2$)을 만든다     즉, 외부 입력과 자.. 2024. 8. 25.
[DL][CNN] CNN(Convolution Neural Network) PyTorch 예제 앞선 글에서 CNN의 기본 개념에 대해 살펴보았습니다 [DL][CNN] Convolution Neural Network(CNN)Convolution Neural Network(CNN) Convolution Neural Network(CNN) 이란 인간의 시신경을 모바하여 만든 Deep Learning 구조이다특히, Convolution 연산을 이용하여 Image의 공간적인 정보를 유지하고, Fully Connected Neural Nself-objectification.tistory.com이번 글에서는 Fashion_MNIST 데이터 셋을 CNN을 통해 분류하는 예제 코드에 대해 공부해보도록 하겠습니다1. 라이브러리 Importimport numpy as npimport pandas as pdimport.. 2024. 8. 15.
[DL][CNN] Convolution Neural Network(CNN) Convolution Neural Network(CNN) Convolution Neural Network(CNN) 이란 인간의 시신경을 모방하여 만든 Deep Learning 구조이다.특히, Convolution 연산을 이용하여 Image의 공간적인 정보를 유지하고, Fully Connected Neural Network 대비 연산량을 획기적으로 줄였으며, Image Classification에서 좋은 성능을 보인다. Image Data우선 Image를 정형 데이터화 하는 방법을 생각해보자정형 데이터란 컴퓨터로 식별가능한 형태로 데이터를 변환하는 것을 의미한다.Image는 Pixel 단위로 구성되어 있고 각 Pixel은 RGB 값으로 구성되어있다.즉, 아주 작은 색이 담긴 네모 상자가 여러개가 모여 이미.. 2024. 8. 1.
반응형